

Consejo Federal de Educación

NÚCLEOS DE APRENDIZAJES PRIORITARIOS

Educación Tecnológica

Para 1° y 2° año / 2° y 3° año del Ciclo Básico de Educación Secundaria

EDUCACIÓN TECNOLÓGICA Ciclo Básico de Educación Secundaria

Durante el 1° y 2° año / 2° y 3° año del Ciclo Básico de la Educación Secundaria¹, la escuela ofrecerá situaciones de enseñanza que promuevan en los alumnos y alumnas:

- La curiosidad y el interés por hacerse preguntas y anticipar respuestas acerca de los procesos tecnológicos, los medios técnicos y los productos², construyendo estrategias de análisis que les permitan comprenderlos y relacionarlos.
- El "análisis de sistemas" identificando las funciones y las relaciones que los constituyen, el modo en que se energizan y controlan, y reconociendo aspectos comunes (analogías) entre ellos.
- El "análisis de procesos tecnológicos" identificando las operaciones de transformación, transporte, almacenamiento/recuperación sobre los materiales, la energía o la información, el modo en que se energizan y controlan; y reconociendo analogías entre ellos.
- El reconocimiento, en distintos contextos y culturas, de la diversidad de los cambios y continuidades en las tecnologías, los productos y procesos, identificando el modo en que la "tecnificación" modifica la organización social de la producción, la vida cotidiana y las subjetividades.
- El reconocimiento de que los procesos y las tecnologías nunca se presentan aisladamente sino formando trayectorias, redes y sistemas que relacionan sus aspectos técnicos, científicos y sociales.
- La creatividad y la confianza en sus posibilidades para comprender y resolver problemas que involucren medios técnicos y procesos tecnológicos, anticipando y representando "qué se va a hacer" y "cómo", y evaluando los resultados obtenidos en función de las metas propuestas.
- La valoracion de los resultados de su propio accionar, realizando experiencias prácticas en el desarrollo de procesos, utilizando medios técnicos y teniendo en cuenta criterios de uso y seguridad.

³ Se refiere a la diferenciación estructural, relacional y funcional de artefactos y sistemas técnicos; progresiva identificación de los flujos de energía e información que circulan por ellos.

¹ Estos propósitos corresponden a 1° y 2° año de Educación Secundaria en las Jurisdicciones con Nivel Primario de 7 años y a 2° y 3° año de Educación Secundaria en las Jurisdicciones con Nivel Primario de 6 años.

² Se entiende por productos tanto a los bienes como a los servicios.

⁴ Se refiere a la progresiva identificación de las *operaciones de transformación* sobre los materiales (conformación, unión/ separación, cambio de propiedades), sobre la energía (paso de una energía a otra) y sobre la información (codificación /decodificación, transducción, organización de datos); del *transporte* y del *almacenamiento/ recuperación* sobre los materiales, la energía y la información.

⁵ Se refiere a la progresiva delegación de las funciones (ejecución, programación y control) de las personas en los medios técnicos, con el consecuente aumento de la complejidad de los artefactos y la simplificación de las tareas.

- El trabajo colaborativo, la disposición a presentar sus ideas y propuestas ante sus pares y profesores, a analizar críticamente las de los otros, y a tomar decisiones compartidas sobre la base de los conocimientos disponibles y de las experiencias realizadas.
- El desarrollo de experiencias que permitan la comprensión del modo en que se organizan en el tiempo y el espacio los procesos, los recursos y el trabajo de las personas, en la producción local, regional y nacional, en pequeña y gran escala.
- La utilización, comprensión, elaboración y valoración de los modos de representación⁶
 y comunicación, que participan en la construcción del conocimiento tecnológico, dándole especificidad.
- El acceso, ampliación y articulación de sus experiencias culturales, incluyendo contenidos y tecnologías de la información y la comunicación⁷.
- El reconocimiento de que las tecnologías, como producto de la acción humana intencionada, condicionan y a la vez dependen de las decisiones políticas, sociales y culturales.
- El reconocimiento de que las tecnologías, en tanto prácticas sociales, multiplican y
 potencian nuevas posibilidades con consecuencias tanto beneficiosas como adversas
 y de riesgo socio ambientales.

⁶ Textos instructivos, esquemas, dibujos y bocetos, diagramas, planos; progresiva utilización de normas de representación de la información técnica.

Por Tecnologías de la Información y la Comunicación (TIC) se consideran tanto a los medios de comunicación masivos tradicionales (diario, radio y televisión), como a los nuevos medios digitales (las computadoras, los celulares, cámaras de fotos, dispositivos de reproducción y grabación de audio y video, redes e Internet y software). Se propone el uso progresivo de estas tecnologías de modo seguro, adecuado, estratégico, crítico, ético y creativo para buscar, organizar, conservar, recuperar, expresar, producir, comunicar y compartir ideas e información.

PRIMER AÑO/ SEGUNDO AÑO DE LA EDUCACIÓN SECUNDARIA

Eje 1: EN RELACIÓN CON LOS PROCESOS TECNOLÓGICOS

El interés y la indagación acerca de los procesos tecnológicos. Esto supone:

- Relacionar las propiedades de los insumos⁸ materiales (maleabilidad, flexibilidad, rigidez, por ejemplo), el tipo de operaciones técnicas realizadas (extrusión, termoformado, torneado, molienda, entre otras) y las características de los productos obtenidos, analizando procesos industriales de transformación de materiales.
- Reconocer las operaciones de transformación de insumos que emplean microorganismos para obtener o mejorar productos, plantas o animales (en la industria alimenticia, en la agricultura y la ganadería, en el tratamiento de residuos, entre otros).
- Reconocer la necesidad de realizar operaciones de retransmisión (para aumentar el alcance de las transmisiones) y de conmutación (para aumentar el número de emisores/receptores), analizando procesos de transmisión de la información a distancia, a través de sistemas telegráficos y telefónicos.
- Analizar procesos tecnológicos de transformación de un tipo de energía en otra mecánica, térmica, radiante, química, eléctrica - identificando las ventajas y desventajas en términos de eficiencia, rendimiento e impacto ambiental.

El reconocimiento del modo en que se organizan y controlan diferentes procesos tecnológicos. Esto supone:

- Analizar técnicas de control de calidad en la producción, identificando las cualidades que se evalúan (permeabilidad o absorción de telas, resistencia de hilos, tiempo de espera del cliente, por ejemplo) y reconociendo las diferencias entre evaluar resultados y evaluar procesos.
- Analizar procesos de producción reconociendo variables tales como la cantidad y la variedad de los productos, el modo de organización (flexible o en línea, por ejemplo) en diferentes tipos de establecimientos productivos (talleres de elaboración de piezas metálicas, ropa o zapatos, líneas de montaje de electrodomésticos o zapatillas, entre otros).
- Analizar los diferentes estados de un proceso automatizado, identificando las variables que pueden sensarse para provocar cambios de estado (por ejemplo: temperatura en invernaderos, heladeras o fermentadores; nivel de líquidos en tanques de agua o combustibles; humedad en sistemas de riego, entre otras).
- Analizar el modo en que se organizan y controlan las comunicaciones entre usuarios conectados a una misma central, identificando las señales utilizadas como protocolo (llamada, tono, ocupado, etc.), y reconociendo enlaces entre diferentes centrales formando redes; y vincularlos con las actuales formas de redireccionar las señales

⁸ Se utiliza el concepto de insumo para identificar aquello que será transformado en un proceso tecnológico para dar lugar a un producto (por ejemplo: materiales, productos semielaborados, energía, combustible, información, señal, entre otros.)

(redes inalámbricas), comparando las formas de redireccionar las señales en la telefonía celular.

La identificación de las tareas que realizan las personas en los procesos tecnológicos. Esto supone:

- Analizar el rol que cumplen las personas en los procesos de producción flexibles y en línea, de acuerdo con el nivel de automación de las operaciones del proceso.
- Diferenciar las tareas de diseño del control de calidad de procesos (selección de cualidades a evaluar, de procedimientos y medios técnicos a utilizar) de las tareas de ensayo (registro y análisis de los resultados obtenidos).
- Reconocer las tareas que desempeñan las personas que intervienen en procesos de transmisión de la información a distancia mediante sistemas telegráficos y telefónicos (codificar, transmitir, retransmitir, conmutar, recibir, decodificar).

La utilización y el análisis de diferentes maneras de comunicar la información técnica correspondiente a un proceso. Esto supone:

- Interpretar y realizar diagramas y esquemas que representan organizaciones espaciales y temporales de líneas de producción, mediante diagramas temporales, de procesos, planos, diagramas de flujo, entre otros.
- Seleccionar adecuadamente y utilizar los medios que ofrecen las tecnologías de la información y la comunicación en la búsqueda, representación y presentación de información de los procesos estudiados (software de simulación, de presentaciones gráficas, weblogs, cámara digital, proyector digital, entre otros).

Eje 2: EN RELACIÓN CON LOS MEDIOS TÉCNICOS

El interés y la indagación acerca de las secuencias de actividades y tareas delegadas en los artefactos. Esto supone:

- Reconocer la delegación del programa de acciones humanas (sensado de variables, comparación con el valor de referencia, toma de decisiones y actuación) en los sistemas y artefactos automatizados.
- Reconocer que los relevos humanos para retransmitir la señal (por ejemplo: en el sistema óptico de Chappe) se delegan en los relés de los sistemas telegráficos eléctricos y en los amplificadores de los sistemas telefónicos.

La identificación de las relaciones entre los componentes de un sistema, sus propiedades y las funciones que cumplen. Esto supone:

- Reconocer analogías entre los circuitos telegráficos y telefónicos, y entre los componentes que cumplen las funciones de emisión y recepción, identificando en cada caso el tipo de transducción que se realiza: mecánico-eléctrica o viceversa.
- Analizar máquinas identificando los flujos de energía, materia e información que circulan, reconociendo las funciones de los mecanismos que las constituyen

(transmisión, transformación, almacenamiento, por ejemplo) y los dispositivos y estrategias de control que poseen.

- Explorar la estructura y el comportamiento de sistemas automáticos con controladores (mecánicos, hidráulicos, neumáticos o eléctricos), identificando las partes del sistema que constituyen el "programa de acciones".
- Interpretar y realizar representaciones normalizadas de componentes de comunicación y de control.
- Realizar e interpretar diagramas de bloques que representen las funciones y relaciones en las máguinas, en sistemas de comunicación y en sistemas de control.
- Utilizar dibujos, bocetos y planos para representar formas, dimensiones y estructuras de artefactos y dispositivos.
- Analizar las funciones que cumplen los distintos dispositivos que se utilizan para la producción/generación, transporte y conservación de la energía eléctrica (generador, turbina, acumulador, transformador, entre otros) identificando las características estructurales que poseen.
- Analizar la estructura y el funcionamiento de artefactos que transforman algún tipo de energía en movimiento, identificando las relaciones existentes entre las partes que las constituyen para lograr el movimiento circular continuo (por ejemplo: motores eléctricos, de vapor, de combustión).

La búsqueda, evaluación y selección de alternativas de solución a problemas que impliquen procesos de diseño. Esto supone:

- Participar de experiencias grupales de planificación e implementación de procesos de producción en escala escolar, tomando decisiones respecto a la organización de los mismos.
- Resolver problemas de diseño de productos o técnicas de control de calidad de productos y/o procesos analizando las variables y relaciones a medir y seleccionando instrumentos de detección y medición.
- Resolver problemas de diseño de artefactos electromecánicos seleccionando controladores eléctricos y mecánicos, tomando decisiones sobre el tipo de control a realizar: temporizado, mediante programadores cíclicos; lógico, utilizando circuitos de llaves combinadas en serie o paralelo.
- Resolver problemas de diseño de sistemas de transmisión de la información a distancia punto a punto y multipunto, en base a tecnologías eléctricas, tomando decisiones sobre los componentes a utilizar, los circuitos a construir y los códigos y protocolos para su funcionamiento.

Eje 3: EN RELACIÓN CON LA REFLEXION SOBRE LA TECNOLOGÍA, COMO PROCESO SOCIOCULTURAL: DIVERSIDAD, CAMBIOS Y CONTINUIDADES

El reconocimiento de que los procesos y las tecnologías se presentan formando conjuntos, redes y sistemas. Esto supone:

 Analizar y representar, mediante diagramas y esquemas, las diversas interacciones entre procesos tecnológicos, actores y tecnologías, que configuran un sistema sociotécnico⁹. Por ejemplo el sistema de producción de la "revolución industrial" teniendo en cuenta la provisión y uso de la energía¹⁰.

La indagación sobre la continuidad y los cambios que experimentan las tecnologías a través del tiempo. Esto supone:

- Identificar, en diferentes momentos del desarrollo tecnológico, procesos en los cuales se conservan las operaciones tecnológicas, mas allá de los medios técnicos utilizados.
- Comparar los tiempos involucrados para realizar una misma actividad con tecnologías
 y formas organizacionales de distintas épocas y/o culturas, e indagar sobre los modos
 en que la reducción de esos tiempos incide en la calidad de vida diaria y laboral de las
 personas.
- Analizar críticamente cómo la incorporación de sistemas automatizados, en los que se delegan programas de acciones, complementa, refuerza o sustituye el accionar humano, en la vida cotidiana y en contextos de trabajo.
- Reconstruir el proceso a través del cual se adopta el uso de una tecnología (vigente), identificando el papel jugado por los actores involucrados, sus expectativas e intereses y las diferentes alternativas de soluciones propuestas.
- Analizar críticamente la conveniencia y oportunidad de reemplazar los combustibles fósiles por otros renovables, considerando las interrelaciones posibles con aspectos de la vida cotidiana y de la producción (por Ej.: las implicancias del uso de los agro combustibles en relación con el ambiente, los patrones de consumo del parque automotor, el acceso a los alimentos, el uso de la tierra, otros).

El interés y la indagación de la coexistencia de tecnologías diferentes en una misma sociedad o en culturas específicas. Esto supone:

 Reconocer las coexistencias del uso de energías renovables y no renovables, tanto en forma concentrada/centralizada como aislada/descentralizada, su adecuación, diversidad de escala de producción y disponibilidad/uso en distintos grupos sociales en una misma sociedad.

La reflexión sobre la creciente potencialidad de las tecnologías disponibles y su contraste con las condiciones de vida. Esto supone:

 Reconocer la importancia de seleccionar tecnologías por su valor social y sustentabilidad ambiental, analizando las consecuencias de su uso acrítico e

⁹Se utiliza este término para aludir a procesos que ocurren en situaciones concretas en las cuales se reconoce una mutua y simultánea resolución (co-construcción) de aspectos sociales y técnicos. El concepto tiende a evitar consideraciones deterministas propias de enfoques centrados exclusivamente en la Tecnología, como enfoques que supeditan la tecnología a procesos Sociales. Actualmente, varias líneas de investigación en los estudios sociales de la tecnología discuten esta aproximación.

Ver ejemplos en Mumford, Lewis (1963) "Técnica y civilización", Madrid, Alianza; Jacomy, Bruno (1990) "Historia de las Técnicas", Bs. As., Losada; Gille, Bertrand (1978) "Introducción a la historia de las técnicas", Barcelona, Crítica/ Marcombo, entre otros.

identificando prácticas de consumo (por Ej. identificar los grados de reciclabilidad de los materiales descartables y las ventajas del uso de materiales reutilizables: pañales, máquinas de afeitar, pilas, biromes, envases, accesorios para el hogar, etc.).

SEGUNDO AÑO / TERCER AÑO DE LA EDUCACIÓN SECUNDARIA

Eje 1: EN RELACIÓN CON LOS PROCESOS TECNOLÓGICOS

El interés y la indagación acerca de los procesos tecnológicos. Esto supone:

- Analizar procesos correspondientes a diferentes escalas y contextos de producción (procesos agrícola-ganaderos, elaboración y distribución de alimentos, organización de eventos, por ejemplo) identificando las operaciones de transformación, transporte, demora, inspección y almacenamiento.
- Analizar sistemas y procesos automatizados, identificando los cambios promovidos por la información proveniente de sensores o porque se encuentran programados en función del tiempo, con el fin de controlar y mantener la estabilidad del sistema.
- Analizar procesos de comunicación a distancia mediante señales digitales, identificando operaciones de digitalización, transmisión, decodificación y recepción.
- Reconocer las propiedades de los códigos binarios analizando sus aplicaciones para la transmisión y almacenamiento/recuperación de información en diferentes formatos (textos, imágenes, por ejemplo).
- Identificar las operaciones involucradas en los procesos de comunicación a distancia (digitalización, transformación de señales eléctricas en ondas de radiofrecuencia, señales luminosas) en el que confluyan diferentes artefactos y sistemas.

El reconocimiento del modo en que se organizan y controlan diferentes procesos tecnológicos. Esto supone:

- Identificar comportamientos automáticos en procesos de transporte, transformación o almacenamiento, diferenciando el tipo de control (por tiempo, con sensores a lazo abierto o por realimentación) y reconociendo operaciones de sensado, temporización, control y actuación.
- Reconocer el rol de los sistemas automáticos programables como medios para dotar de flexibilidad (permitiendo la movilidad y adaptabilidad) de los procesos, analizando diferentes comportamientos e infiriendo sus lógicas de programación: ciclos, secuencias repetitivas, estructuras condicionales.
- Diferenciar diversos tipos de organización de los procesos: por proyecto, intermitente, por lotes, en línea, continuos.
- Analizar casos reales de producción por proyecto identificando las tareas y el modo en que estas se organizan en el tiempo (redes de precedencias), estableciendo las "rutas críticas" y explorando la influencia de los cambios en las tareas "críticas" sobre la duración total de los proyectos.

La identificación de las tareas que realizan las personas en los procesos tecnológicos. Esto supone:

- Reconocer los roles de las personas en los procesos automatizados, diferenciando entre tareas de programación y tareas de supervisión de los sistemas.
- Participar de experiencias grupales de planificación de proyectos escolares (simulación de la planificación de la elaboración de bienes o de servicios), tomando decisiones (sobre la organización de las tareas, la administración de los recursos y la asignación de roles y funciones) y reflexionando sobre las diferencias entre el rol de las personas durante la planificación y durante la ejecución de los proyectos.

La utilización y el análisis de diferentes maneras de comunicar la información técnica correspondiente a un proceso. Esto supone:

- Representar mediante diagramas de redes o de tiempo y software de gestión de proyectos el modo en que se organizan las tareas de un proyecto, identificando rutas o caminos críticos.
- Interpretar y utilizar la simbología normalizada para representar la secuencia de operaciones de un proceso, mediante diagramas temporales, de flujo, entre otros.
- Seleccionar y utilizar adecuadamente los medios que ofrecen las tecnologías de la información y la comunicación para buscar, representar y presentar información.

Eje 2: EN RELACIÓN CON LOS MEDIOS TÉCNICOS

El interés y la indagación acerca de las secuencias de actividades y tareas delegadas en los artefactos. Esto supone:

- Reconocer las diferencias entre técnicas de control discreto y analógico, analizando y comparando los procedimientos delegados en los artefactos, para medir y controlar variables (temperatura, nivel de líquidos, entre otros).
- Reconocer las secuencias de operaciones delegadas en los robots en los procesos industriales, e identificar las formas de programación gestual (por posiciones y por trayectorias) y textuales.

La identificación de las relaciones entre los componentes de un sistema, sus propiedades y las funciones que cumplen. Esto supone:

- Analizar las propiedades características de diferentes medios de transmisión de señales y las condiciones de propagación (cables conductores de cobre, cable coaxil, ondas de radio, fibras ópticas) reconociendo las ventajas y limitaciones de cada uno para cumplir con especificaciones tales como: alcance, velocidad o cantidad de información simultánea a transmitir.
- Identificar los controladores, sensores y actuadores, reconociendo el modo en que circulan los flujos de energía, materia e información, al analizar procesos y sistemas automáticos complejos (lavadero automático de autos, sistemas de control de peajes, procesos agroindustriales, entre otros).

- Analizar y utilizar tablas de estado y diagramas temporales que representen la transmisión de la información codificada en formato digital.
- Analizar y utilizar diagramas de bloques para representar artefactos y sistemas por los que circulan flujos de materia, energía e información.
- Representar mediante diagramas de flujos y de estados, el comportamiento de diferentes sistemas automáticos.
- Identificar aspectos estructurales y funcionales tales como grados de libertad, tipos de actuadores, tipos de sensores y capacidad de adaptarse a cambios del entorno, analizando robots de uso industrial (brazos manipuladores, vehículos guiados autónomamente, entre otros).

La búsqueda, evaluación y selección de alternativas de solución a problemas que impliquen procesos de diseño. Esto supone:

- Resolver problemas de cálculo de tiempos y costos de un proyecto, mediante el uso de diagrama de tareas y tiempos utilizando planillas de cálculo, software de gestión de proyectos, entre otros.
- Resolver problemas de diseño, construcción y ajuste de controladores electromecánicos, tomando decisiones sobre el tipo de control a realizar: temporizado, mediante programadores cíclicos; lógico, mediante circuitos de llaves combinadas en serie o paralelo; con sensores magnéticos o pulsador normal cerrado; con amplificadores, mediante relés.
- Resolver problemas de control automático utilizando software específico y controladores¹¹ (interfaces), programando las salidas para activar lámparas o motores en función del tiempo o de acuerdo a la información proveniente de sensores conectados a las entradas.

Eje 3: EN RELACIÓN CON LA REFLEXION SOBRE LA TECNOLOGÍA, COMO PROCESO SOCIOCULTURAL: DIVERSIDAD, CAMBIOS Y CONTINUIDADES

El reconocimiento de que los procesos y las tecnologías se presentan formando conjuntos, redes y sistemas. Esto supone:

- Analizar y representar las interacciones entre los procesos tecnológicos, actores y tecnologías que configuran el actual sistema sociotécnico¹².
- Analizar críticamente y describir el fenómeno sociotécnico conocido como "convergencia de modos o de medios", por el cual los procesos tecnológicos que operaban sobre tecnologías de diferentes clases, tienden a realizarse sobre un soporte común (por ejemplo: el dibujo, el cálculo, la fotografía, la escritura, las comunicaciones, sobre el soporte informático).

¹¹ Refiere al uso de artefactos diseñados para uso didáctico, como así también los de uso corriente.

¹² Ver ejemplos en Coriat, Benjamín (1990) "El taller y el robot", Siglo XXI, México y Hughes Thomas (2009) en Thomas, Hernán y Buch, Alfonso (coord.), "Actos, actores y artefactos", Editorial Univ. Nac. de Quilmes (UNQ), Argentina; entre otros.

La indagación sobre la continuidad y los cambios que experimentan las tecnologías a través del tiempo. Esto supone:

- Comparar las decisiones sociotécnicas tomadas, para la resolución situaciones problemáticas complejas, desde diferentes enfoques teóricos (por Ej.: el determinismo técnico, el constructivismo social, otros) a partir del análisis de casos.
- Identificar los cambios en la localización de la producción, a partir del uso de los sistemas de transmisión de la información a distancia, y las consecuentes modificaciones en las representaciones del tiempo y del espacio.
- Comparar las tecnologías de almacenamiento/recuperación presentes y pasadas, considerando las pérdidas y la calidad de la información al transferir información (imagen sonidos, textos) de unas a otras.
- Analizar los propósitos y actividades en algunas de las principales instituciones del estado que participan del Sistema Nacional de Innovación (INTI, INVAP, CONAE, CNEA, INTA, ANMAT, INPI, etc.) y de otras a nivel jurisdiccional y/o local (universidades, empresas, complejos de desarrollo, etc.).

El interés y la indagación de la coexistencia de tecnologías diferentes en una misma sociedad o en culturas específicas. Esto supone:

 Comparar escalas de producción, características y costos de los productos terminados, los modos de gestión y distribución de excedentes económicos, la energía involucrada, el tipo de desechos producidos y su grado de reutilización y contaminación en tecnologías diversas que coexisten en la región.

La reflexión sobre la creciente potencialidad de las tecnologías disponibles y su contraste con las condiciones de vida. Esto supone:

 Analizar problemáticas cotidianas complejas, desde un punto de vista sociotécnico, ensayando preguntas y respuestas como ciudadanos (por Ej.: analizar la conveniencia de utilizar máquinas con bajo grado de automatización y producciones de mediana o baja escala, con resultados efectivos, distinguiendo efectos deseables y perjudiciales).